7 Normdist là gì mới nhất

normdist la gi b95b34c6072bcff4c26f08db438ee6a9 1

Có thể bạn quan tâm

  • airdrop mới: phòng thí nghiệm sống động Phần thưởng: $ 500 trong $
  • Bài 15.3; 15.4 trang 22 sbt hóa học 11
  • Căn 1 bằng bao nhiêu
  • Đề bài – giải câu 3 trang 31 sbt địa 10
  • Tại sao có cây trồng

Gần như bất kỳ gói phần mềm thống kê nào cũng có thể được sử dụng để tính toán liên quan đến phân phối chuẩn, thường được gọi là đường cong hình chuông. Excel được trang bị vô số bảng và công thức thống kê, và việc sử dụng một trong các hàm của nó cho phân phối chuẩn là điều khá đơn giản. Chúng ta sẽ xem cách sử dụng hàm NORM.DIST và NORM.S.DIST trong Excel.

Xem Tắt

  • 1 Phân phối bình thường
  • 2 NORM.S.DIST
  • 3 Thí dụ
  • 4 NORM.DIST
  • 5 Thí dụ
  • 6 NORM.S.DIST so với NORM.DIST
    • 6.1 Video liên quan

Phân phối bình thường

Có vô số phân phối chuẩn. Phân phối chuẩn được xác định bởi một hàm cụ thể trong đó hai giá trị đã được xác định: giá trị trung bình và độ lệch chuẩn. Giá trị trung bình là bất kỳ số thực nào chỉ ra trung tâm của phân phối. Độ lệch chuẩn là một số thực dương , là phép đo mức độ trải rộng của phân phối. Khi chúng ta biết các giá trị của giá trị trung bình và độ lệch chuẩn, phân phối chuẩn cụ thể mà chúng ta đang sử dụng đã được xác định hoàn toàn.

Các phân phối chuẩn chuẩn là một phân phối đặc biệt ra khỏi vô số phân phối chuẩn. Phân phối chuẩn chuẩn có giá trị trung bình là 0 và độ lệch chuẩn là 1. Mọi phân phối chuẩn đều có thể được chuẩn hóa thành phân phối chuẩn chuẩn bằng một công thức đơn giản. Đây là lý do tại sao, thông thường, phân phối chuẩn duy nhất có các giá trị được lập bảng là phân phối chuẩn chuẩn. Loại bảng này đôi khi được gọi là bảng điểm số z.

NORM.S.DIST

Hàm Excel đầu tiên mà chúng ta sẽ kiểm tra là hàm NORM.S.DIST. Hàm này trả về phân phối chuẩn chuẩn. Có hai đối số cần thiết cho hàm: z và tích lũy. Đối số đầu tiên của z là số độ lệch chuẩn so với giá trị trung bình. Vì vậy, z = -1,5 là độ lệch chuẩn rưỡi dưới mức trung bình. Điểm z của z = 2 là hai độ lệch chuẩn trên giá trị trung bình.

Đối số thứ hai là tích lũy. Có thể nhập hai giá trị ở đây: 0 cho giá trị của hàm mật độ xác suất và 1 cho giá trị của hàm phân phối tích lũy. Để xác định khu vực bên dưới đường cong , chúng ta sẽ nhập số 1 ở đây.

Thí dụ

Để giúp hiểu cách hoạt động của hàm này, chúng ta sẽ xem xét một ví dụ. Nếu chúng ta nhấp vào một ô và nhập = NORM.S.DIST (.25, 1), sau khi nhấn enter, ô đó sẽ chứa giá trị 0,5987, đã được làm tròn đến bốn chữ số thập phân. Điều đó có nghĩa là gì? Có hai cách giải thích. Đầu tiên là diện tích dưới đường cong cho z nhỏ hơn hoặc bằng 0,25 là 0,5987. Cách giải thích thứ hai là 59,87 phần trăm diện tích dưới đường cong của phân phối chuẩn chuẩn xảy ra khi z nhỏ hơn hoặc bằng 0,25.

NORM.DIST

Hàm Excel thứ hai mà chúng ta sẽ xem xét là hàm NORM.DIST. Hàm này trả về phân phối chuẩn cho một giá trị trung bình và độ lệch chuẩn được chỉ định. Có bốn đối số bắt buộc cho hàm: x , trung bình, độ lệch chuẩn và tích lũy. Đối số đầu tiên của x là giá trị quan sát được của phân phối của chúng ta. Giá trị trung bình và độ lệch chuẩn có thể tự giải thích được. Đối số cuối cùng của “tích lũy” giống với đối số của hàm NORM.S.DIST.

Thí dụ

Để giúp hiểu cách hoạt động của hàm này, chúng ta sẽ xem xét một ví dụ. Nếu chúng ta nhấp vào một ô và nhập = NORM.DIST (9, 6, 12, 1), sau khi nhấn enter, ô sẽ chứa giá trị 0,5987, đã được làm tròn đến bốn chữ số thập phân. Điều đó có nghĩa là gì?

Giá trị của các đối số cho chúng ta biết rằng chúng ta đang làm việc với phân phối chuẩn có giá trị trung bình là 6 và độ lệch chuẩn là 12. Chúng tôi đang cố gắng xác định xem phần trăm của phân phối xảy ra đối với x nhỏ hơn hoặc bằng 9. Tương đương, chúng ta muốn diện tích nằm dưới đường cong của phân phối chuẩn cụ thể này và ở bên trái của đường thẳng đứng x = 9.

NORM.S.DIST so với NORM.DIST

Có một số điều cần lưu ý trong các tính toán trên. Chúng tôi thấy rằng kết quả cho mỗi phép tính này là giống nhau. Điều này là do 9 là 0,25 độ lệch chuẩn so với mức trung bình của 6. Đầu tiên chúng ta có thể chuyển đổi x = 9 thành điểm z là 0,25, nhưng phần mềm đã làm điều này cho chúng ta.

Một điều khác cần lưu ý là chúng ta thực sự không cần cả hai công thức này. NORM.S.DIST là một trường hợp đặc biệt của NORM.DIST. Nếu chúng ta để giá trị trung bình bằng 0 và độ lệch chuẩn bằng 1, thì các phép tính cho NORM.DIST khớp với các phép tính của NORM.S.DIST. Ví dụ: NORM.DIST (2, 0, 1, 1) = NORM.S.DIST (2, 1).

Video liên quan

ADVERTISEMENT

Nguồn: https://quatangtiny.com
Danh mục: Biểu mẫu thủ tục hành chính khác